请输入您要查询的字词:

 

单词 KrullSchmidtTheorem
释义

Krull-Schmidt theorem


A group G is said to satisfy the ascending chain conditionMathworldPlanetmathPlanetmathPlanetmath (or ACC) on normal subgroupsMathworldPlanetmath if there is no infiniteMathworldPlanetmath ascending proper chainG1G2G3 with each Gi a normal subgroup of G.

Similarly, G is said to satisfy the descending chain conditionMathworldPlanetmathPlanetmath (or DCC) on normal subgroups if there is no infinite descending proper chain of normal subgroups of G.

One can show that if a nontrivial group satisfies either the ACC or the DCC on normal subgroups, then that group can be expressed as the internal direct productMathworldPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmath of finitely many indecomposableMathworldPlanetmath subgroupsMathworldPlanetmathPlanetmath. If both the ACC and DCC are satisfied, the Krull-Schmidt theorem guarantees that this “decomposition into indecomposables” is essentially unique. (Note that every finite groupMathworldPlanetmath satisfies both the ACC and DCC on normal subgroups.)

Krull-Schmidt theorem: Let G be a nontrivial group satisfying both the ACC and DCC on its normal subgroups. Suppose G=G1××Gn and G=H1××Hm (internal direct products) where each Gi and Hi is indecomposable. Then n=m and, after reindexing, GiHi for each i. Moreover, for all k<n, G=G1××Gk×Hk+1××Hn.

For proof, see Hungerford’s AlgebraMathworldPlanetmathPlanetmath.

NoetherianPlanetmathPlanetmath [resp. artinianPlanetmathPlanetmath] modules satisfy the ACC [resp. DCC] on submodulesMathworldPlanetmath. Indeed the Krull-Schmidt theorem also appears in the context of module theory. (Sometimes, as in Lang’s Algebra, this result is called the Krull-Remak-Schmidt theorem.)

Krull-Schmidt theorem (for modules): A nonzero module that is both noetherian and artinian can be expressed as the direct sumMathworldPlanetmathPlanetmath of finitely many indecomposable modules. These indecomposable summands are uniquely determined up to isomorphismMathworldPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmath and permutationMathworldPlanetmath.

References.

  • Hungerford, T., Algebra. New York: Springer, 1974.

  • Lang, S., Algebra. (3d ed.), New York: Springer, 2002.

TitleKrull-Schmidt theorem
Canonical nameKrullSchmidtTheorem
Date of creation2013-03-22 15:24:00
Last modified on2013-03-22 15:24:00
OwnerCWoo (3771)
Last modified byCWoo (3771)
Numerical id24
AuthorCWoo (3771)
Entry typeTheorem
Classificationmsc 16P40
Classificationmsc 16P20
Classificationmsc 16D70
Classificationmsc 20E34
Classificationmsc 20-00
SynonymKrull-Remak-Schmidt theorem
Related topicIndecomposableGroup
Definesascending chain condition
Definesdescending chain condition
随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 3:42:06