请输入您要查询的字词:

 

单词 LaplaceTransformOfDiracDelta
释义

Laplace transform of Dirac delta


The Dirac delta (http://planetmath.org/DiracDeltaFunction) δ can be interpreted as a linear functionalMathworldPlanetmath, i.e. a linear mapping from a function spaceMathworldPlanetmath, consisting e.g. of certain real functions, to (or ), having the property

δ[f]=f(0).

One may think this as the inner productMathworldPlanetmath

f,δ=0f(t)δ(t)𝑑t

of a functionMathworldPlanetmath f and another “function” δ, when the well-known

0f(t)δ(t)𝑑t=f(0)

is true.  Applying this to  f(t):=e-st,  one gets

0e-stδ(t)𝑑t=e-0,

i.e. the Laplace transformDlmfMathworldPlanetmath

{δ(t)}= 1.(1)

By the delay theorem, this result may be generalised to

{δ(t-a))}=e-as.

When introducing some “nascent Dirac delta function”, for example

ηε(t):={1εfor  0tε,0for  t>ε,

as an “approximation” of Dirac delta, we obtain the Laplace transform

{ηε(t)}=0e-stηε(t)𝑑t=0εe-stε𝑑t+εe-st0𝑑t=1ε0εe-st𝑑t=1-e-εsεs.

As the Taylor expansionMathworldPlanetmath shows, we then have

limε0+{ηε(t)}= 1,

being in accordance with (1).

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 6:48:48