请输入您要查询的字词:

 

单词 LaplaceTransformOfSineIntegral
释义

Laplace transform of sine integral


0.1 Derivation of {Sit}

If one performs the change of integration variable

u=tx,du=tdx

in the defining integral (http://planetmath.org/DefiniteIntegral)

Sit=0tsinuu𝑑u,

of the sine integralDlmfDlmfDlmfMathworldPlanetmath functionMathworldPlanetmath, one obtains

Sit=01sintxtxt𝑑x=01sintxx𝑑x,

getting limits (http://planetmath.org/UpperLimit).  We know (see the entry Laplace transform of sine and cosine) that

{sintxx}=1s2+x2.

This transformation formula can be integrated with respect to the parametre x:

{01sintxx𝑑x}=011s2+x2𝑑x=1s/x=01arctanxs=1sarctan1s.

Thus we have the transformation formula of the sinus integralis:

{Sit}=1sarctan1s.(1)

0.2 Laplace transform of sinc function

By the formula  {f}=s{f}-limx0+f(x)  of the parent (http://planetmath.org/LaplaceTransform) entry,we obtain as consequence of (1), that

{ddtSit}=s1sarctan1s-Si 0,

i.e.

{sintt}=arctan1s.(2)

The formula (2) may be determined also directly using the definition of Laplace transformDlmfMathworldPlanetmath.  Take an additional parametre a to the defining integral

{sintt}=0e-stsintt𝑑t

by setting

0e-stsinatt𝑑t:=φ(a).

Now we have the derivative  φ(a)=0e-stcosatdt,  where one can partially integrate twice, getting

φ(a)=0e-stcosatdt=1s-a2s20e-stcosatdt.

Thus we solve

0e-stcosatdt=1s1+(as)2=φ(a),

and since  φ(0)=0, we obtain  φ(a)=arctanas.  This yields

0e-stsintt𝑑t=φ(1)=arctan1s,

i.e. the formula (2).

Formula (2) is derived here (http://planetmath.org/LaplaceTransformOfFracftt) in a third way.

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 5:12:19