请输入您要查询的字词:

 

单词 LehmannScheffeTheorem
释义

Lehmann-Scheffé theorem


A statisticMathworldMathworldPlanetmath S(𝑿) on a random sample of data 𝑿=(X1,,Xn) is said to be a complete statistic if for any Borel measurable function g,

E(g(S))=0impliesP(g(S)=0)=1.

In other words, g(S)=0 almost everywhere whenever the expected valueMathworldPlanetmath of g(S) is 0. If S(𝑿) is associated with a family f(xθ) of probability density functionsMathworldPlanetmath (or mass function in the discrete case), then completeness of S means that g(S)=0 almost everywhere whenever Eθ(g(S))=0 for every θ.

Theorem 1 (Lehmann-Scheffé).

If S(𝐗) is a complete sufficient statistic and h(𝐗) is an unbiased estimatorMathworldPlanetmath for θ, then, given

h0(s)=E(h(𝑿)|S(𝑿)=s),

h0(S)=h0(S(𝑿)) is a uniformly minimum variance unbiased estimatorMathworldPlanetmath of θ. Furthermore, h0(S) is unique almost everywhere for every θ.

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 10:37:02