请输入您要查询的字词:

 

单词 LeibnizHarmonicTriangle
释义

Leibniz harmonic triangle


The Leibniz harmonic triangle is a triangular arrangement of fractions in which the outermost diagonals consist of the reciprocals of the row numbers and each inner cell is the absolute valueMathworldPlanetmathPlanetmathPlanetmath of the cell above minus the cell to the left. To put it algebraically, L(r,1)=1n (where r is the number of the row, starting from 1, and c is the column number, never more than r) and L(r,c)=L(r-1,c-1)-L(r,c-1).

The first eight rows are:

11212131613141121121415120130120151613016016013016171421105114011051421718156116812801280116815618

The denominators are listed in A003506 of Sloane’s OEIS, while the numerators, which are all 1s, are listed in A000012. The denominators of the second outermost diagonal are oblong numbers. The sum of the denominators in the nth row is n2n-1.

Just as Pascal’s triangle can be computed by using binomial coefficientsDlmfDlmfMathworldPlanetmath, so can Leibniz’s:

L(r,c)=1c(rc)

.

This triangle can be used to obtain examples for the Erdős-Straus conjecture (http://planetmath.org/ErdHosStrausConjecture) when 4|n.

References

  • 1 A. Ayoub, “The Harmonic Triangle and the Beta FunctionDlmfDlmfMathworldPlanetmathMath. Magazine 60 4 (1987): 223 - 225
  • 2 D. Darling, “Leibniz’ harmonic triangle” in The Universal Book of Mathematics: From Abracadabra To Zeno’s paradoxes. Hoboken, New Jersey: Wiley (2004)
随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/29 8:53:02