请输入您要查询的字词:

 

单词 LevyDesplanquesTheorem
释义

Levy-Desplanques theorem


A strictly diagonally dominant matrix is non-singular. In other words, let A𝐂n,n be a matrix satisfying the property

|aii|>ji|aij|  i;

then det(A)0.

Proof:Let det(A)=0; then a non-zero vector 𝐱 exists such that A𝐱=𝟎; let M be the index such that |xM|=max(|x1|,|x2|,,|xn|), so that |xj||xM|j; we have

aM1x1+aM2x2++aMMxM++aMnxn=0

which implies:

|aMM||xM|=|aMMxM|=|jMaMjxj|jM|aMj||xj||xM|jM|aMj|

that is

|aMM|jM|aMj|,

in contrast with strictly diagonally dominance definition.

Remark:the Levy-Desplanques theorem is equivalentMathworldPlanetmathPlanetmathPlanetmathPlanetmath to the well-known Gerschgorin circle theoremMathworldPlanetmath. In fact, let’s assume Levy-Desplanques theorem is true, and let A a n×n complex-valued matrix, with an eigenvalueMathworldPlanetmathPlanetmathPlanetmathPlanetmath λ; let’s apply Levy-Desplanques theorem to the matrix B=A-λI, which is singularPlanetmathPlanetmath by definition of eigenvalue: an index i must exist for which |aii-λ|=|bii|jin|bij|=jin|aij|, which is Gerschgorin circle theorem.On the other hand, let’s assume Gerschgorin circle theorem is true, and let A be a strictly diagonally dominant n×n complex matrix. Then, since the absolute valueMathworldPlanetmathPlanetmath of each disc center |aii| is strictly greater than the same disc radius jin|aij|, the point λ=0 can’t belong to any circle, so it doesn’t belong to the spectrum of A, which therefore can’t be singular.

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 4:00:09