limit of sequence as sum of seriesIf U is the limit of a sequenceu1,u2,u3,…of real or complex numbers, then U can be expressed as the series sumU=u1+∑i=1∞(ui+1-ui).Proof. Let sn:=u1+∑i=1n-1(ui+1-ui). We see thatsn=u1+∑i=1n-1ui+1-∑i=1n-1ui=u1+∑j=2nuj-∑i=1n-1ui=unfor all n=1, 2, 3,… Thusu1+∑i=1∞(ui+1-ui)=limn→∞sn=limn→∞un=U,Q.E.D.