请输入您要查询的字词:

 

单词 LinearAlgebra
释义

linear algebra


Linear algebra is the branch of mathematics devoted to the theory oflinear structureMathworldPlanetmath. The axiomatic treatment of linear structure isbased on the notions of a linear spacePlanetmathPlanetmath (more commonly known as avector space), and a linear mapping. Broadly speaking,there are two fundamental questions considered by linear algebra:

  • the solution of a linear equation, and

  • diagonalization, a.k.a. the eigenvalue problem.

From the geometric point of view, “linear” is synonymous with“straight”, and consequently linear algebra can be regarded as thebranch of mathematics dealing with lines and planes, as well as withtransformationsMathworldPlanetmath of space that preserve “straightness”, e.g.rotationsMathworldPlanetmath and reflections. The two fundamental questions, in geometricterms, deal with

  • the intersectionMathworldPlanetmath of hyperplanesMathworldPlanetmathPlanetmath, and

  • the principal axes of an ellipsoidMathworldPlanetmathPlanetmath.

Linearity is a very basic notion, and consequently linear algebra hasapplications in numerous areas of mathematics, science, andengineering. Diverse disciplines, such as differential equations,differential geometry, the theory of relativity, quantum mechanics,electrical circuitsMathworldPlanetmath, computer graphics, and information theory benefitfrom the notions and techniques of linear algebra.

Euclidean geometryMathworldPlanetmath is related to a specialized branch of linearalgebra that deals with linear measurement. Here the relevant notionsare length and angle. A typical question is the determination oflines perpendicularMathworldPlanetmathPlanetmathPlanetmath to a given plane. A somewhat less specializedbranch deals with affine structure, where the key notion is that ofarea and volume. Here determinantsMathworldPlanetmath play an essential role.

Yet another branch of linear algebra is concerned with computation,algorithms, and numerical approximation. Important examples of suchtechniques include: Gaussian eliminationMathworldPlanetmath, the method of least squares,LU factorization, QR decompositionMathworldPlanetmath, Gram-Schmidt orthogonalizationPlanetmathPlanetmath,singular value decompositionMathworldPlanetmath, and a number of iterative algorithms forthe calculation of eigenvalues and eigenvectors.

The following subject outline surveyskey topics in linear algebra.

  1. 1.

    Linear structure.

    1. (a)

      Introduction: systems of linear equations, Gaussianelimination, matrices, matrix operations.

    2. (b)

      Foundations: fields and vector spaces, subspacePlanetmathPlanetmath, linearindependencePlanetmathPlanetmath, basis, ordered basis, dimensionPlanetmathPlanetmath, direct sumMathworldPlanetmathPlanetmath decomposition.

    3. (c)

      Linear mappings: linearity axioms, kernels and images,injectivity, surjectivity, bijectionsMathworldPlanetmath, compositionsMathworldPlanetmathPlanetmath, inversesMathworldPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmath,matrix representations, change of bases, conjugationMathworldPlanetmath, similarityMathworldPlanetmath.

  2. 2.

    Affine structure.

    1. (a)

      Determinants: characterizing properties, cofactorexpansion, permutationsMathworldPlanetmath, Cramer’s rule, classical adjoint.

    2. (b)

      Geometric aspects: Euclidean volume, orientation,equiaffine transformations, determinants as geometric invariantsMathworldPlanetmathof linear transformations.

  3. 3.

    Diagonalization and Decomposition.

    1. (a)

      Basic notions: eigenvectorMathworldPlanetmathPlanetmathPlanetmath, eigenvalueMathworldPlanetmathPlanetmathPlanetmathPlanetmath, eigenspaceMathworldPlanetmath,characteristic polynomialMathworldPlanetmathPlanetmath.

    2. (b)

      Obstructions: imaginary eigenvalues, nilpotenttransformations, classification of 2-dimensional realtransformations.

    3. (c)

      Structure theory: invariant subspaces, Cayley-HamiltontheoremMathworldPlanetmath, Jordan canonical formMathworldPlanetmath, rational canonical form.

  4. 4.

    Multi-linearity.

    1. (a)

      Foundations: vector space dual, bilinearity, bilineartransposeMathworldPlanetmath, Gram-Schmidt orthogonalization.

    2. (b)

      Bilinearity: bilinear forms, symmetric bilinear formsMathworldPlanetmath,quadratic formsMathworldPlanetmath, signaturePlanetmathPlanetmathPlanetmathPlanetmath and Sylvester’s theorem, orthogonaltransformationsMathworldPlanetmath, skew-symmetric bilinear forms, symplectictransformations.

    3. (c)

      Tensor algebra: tensor product, contractionPlanetmathPlanetmath, invariantsof linear transformations, symmetry operations.

  5. 5.

    Euclidean and Hermitian structure.

    1. (a)

      Foundations: inner product axioms, the adjointPlanetmathPlanetmath operationMathworldPlanetmath,symmetricMathworldPlanetmathPlanetmathPlanetmathPlanetmath transformations, skew-symmetric transformations,self-adjoint transformations, normal transformations.

    2. (b)

      Spectral theorem: diagonalization of self-adjointtransformations, diagonalization of quadratic forms.

  6. 6.

    Computational and numerical methods.

    1. (a)

      Linear problems: LU-factorization, QR decomposition, leastsquares, Householder transformations.

    2. (b)

      Eigenvalue problems: singular value decomposition, Gauss andJacobi-Siedel iterative algorithms.

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 17:03:07