请输入您要查询的字词:

 

单词 LocallyCompactQuantumGroupsFromVonNeumannCAlgebrasWithHaarMeasures
释义

locally compact quantum groups from von Neumann/C*- algebras with Haar measures


0.1 Hilbert spaces, Von Neumann algebras and Quantum Groups

John von Neumann introduced a mathematical foundationPlanetmathPlanetmath for Quantum Mechanics in the form ofW*-algebrasPlanetmathPlanetmathPlanetmath (http://planetmath.org/WeakHopfCAlgebra2)of (quantum) bounded operatorsMathworldPlanetmathPlanetmath in a (quantum:= presumed separable, i.e. with a countable basis) Hilbert spaceMathworldPlanetmath HS. Recently, suchvon Neumann algebrasMathworldPlanetmathPlanetmathPlanetmath, W* (http://planetmath.org/WeakHopfCAlgebra2) and/or (more generally) C*-algebras are, for example, employed to definelocally compact quantum groupsPlanetmathPlanetmath CQGlc (http://planetmath.org/LocallyCompactQuantumGroup) by equipping suchalgebras with a co-associative multiplicationPlanetmathPlanetmath (http://planetmath.org/WeakHopfCAlgebra2)and also with associated, both left– and right– Haar measures, defined by two semi-finite normal weights[1].

0.1.1 Remark on Jordan-Banach-von Neumann (JBW) algebras, JBWA

A Jordan–Banach algebraMathworldPlanetmath (a JB–algebra for short) is both a real Jordan algebraPlanetmathPlanetmath and aBanach spaceMathworldPlanetmath, where for all S,T𝔄, we have the following.

A JLB–algebra is a JB–algebra 𝔄 together with a Poisson bracket forwhich it becomes a Jordan–Lie algebraMathworldPlanetmath JL for some 20 . Such JLB–algebras oftenconstitute the real part of several widely studied complex associative algebras.For the purpose of quantization, there are fundamental relationsMathworldPlanetmathPlanetmath between𝔄sa, JLB and Poisson algebras (http://planetmath.org/JordanBanachAndJordanLieAlgebras).

Definition 0.1.

A JB–algebra which is monotone completePlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmath and admits a separating set of normal sets iscalled a JBW-algebra.

These appeared in the work of von Neumann who developed an orthomodular lattice theory of projections on L(H) on which to study quantum logicPlanetmathPlanetmath. BW-algebras have the following property: whereas 𝔄sa is a J(L)B–algebra, the self-adjoint part of a von Neumann algebra is a JBW–algebra.

References

  • 1 Leonid Vainerman. 2003.http://planetmath.org/?op=getobj&from=books&id=160“Locally Compact Quantum Groups and GroupoidsPlanetmathPlanetmath”:
    Proceedings of the Meeting of Theoretical Physicists and Mathematicians, Strasbourg, February 21-23, 2002., Walter de Gruyter Gmbh & Co: Berlin.
  • 2 Von Neumann and thehttp://plato.stanford.edu/entries/qt-nvd/Foundations of Quantum TheoryPlanetmathPlanetmath.
  • 3 Böhm, A., 1966, Rigged Hilbert SpacePlanetmathPlanetmath and Mathematical Description of Physical Systems, Physica A, 236: 485-549.
  • 4 Böhm, A. and Gadella, M., 1989, Dirac Kets, Gamow Vectors and Gel’fand Triplets, New York: Springer-Verlag.
  • 5 Dixmier, J., 1981, Von Neumann Algebras, Amsterdam: North-Holland Publishing Company. [First published in French in 1957: Les Alge’bres d’Ope’rateurs dans l’Espace Hilbertien, Paris: Gauthier-Villars.]
  • 6 Gelfand, I. and Neumark, M., 1943, On the Imbedding of Normed Rings into the Ring of Operators in Hilbert Space,Recueil Mathe’matique [Matematicheskii Sbornik] Nouvelle Se’rie, 12 [54]: 197-213. [Reprinted in C*-algebras: 1943-1993, in the series Contemporary Mathematics, 167, Providence, R.I. : American Mathematical Society, 1994.]
  • 7 Grothendieck, A., 1955, Produits Tensoriels Topologiques et Espaces Nucléaires,Memoirs of the American Mathematical Society, 16: 1-140.
  • 8 Horuzhy, S. S., 1990, Introduction to Algebraic Quantum Field Theory, Dordrecht: Kluwer Academic Publishers.
  • 9 J. von Neumann.,1955, Mathematical Foundations of Quantum Mechanics., Princeton, NJ: Princeton University Press. [First published in German in 1932: Mathematische Grundlagen der Quantenmechanik, Berlin: Springer.]
  • 10 J. von Neumann, 1937, Quantum Mechanics of InfiniteMathworldPlanetmath Systems, first published in (Radei and Statzner 2001, 249-268). [A mimeographed version of a lecture given at Pauli’s seminar held at the Institute for Advanced Study in 1937, John von Neumann Archive, Library of Congress, Washington, D.C.]
随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 10:58:23