LYM inequality
Let be a Sperner family, that is, the collection![]()
ofsubsets of such that no set contains any other subset.Then
This inequality is known as LYM inequality by the names ofthree people that independently discovered it:Lubell[2], Yamamoto[4],Meshalkin[3].
Since for every integer , LYM inequality tells us that which is Sperner’s theorem (http://planetmath.org/SpernersTheorem).
References
- 1 Konrad Engel. Sperner theory, volume 65 of Encyclopedia of Mathematicsand Its Applications. Cambridge University Press. http://www.emis.de/cgi-bin/zmen/ZMATH/en/quick.html?type=html&an=0868.05001Zbl 0868.05001.
- 2 David Lubell. A short proof of Sperner’s lemma. J. Comb. Theory, 1:299, 1966. http://www.emis.de/cgi-bin/zmen/ZMATH/en/quick.html?type=html&an=0151.01503Zbl 0151.01503.
- 3 Lev D. Meshalkin. Generalization
of Sperner’s theorem on the number of subsets of afinite set

. Teor. Veroyatn. Primen., 8:219–220, 1963. http://www.emis.de/cgi-bin/zmen/ZMATH/en/quick.html?type=html&an=0123.36303Zbl 0123.36303.
- 4 Koichi Yamamoto. Logarithmic order of free distributive lattice

. J. Math. Soc. Japan, 6:343–353, 1954. http://www.emis.de/cgi-bin/zmen/ZMATH/en/quick.html?type=html&an=0056.26301Zbl 0056.26301.