LYM inequality
Let be a Sperner family, that is, the collection ofsubsets of such that no set contains any other subset.Then
This inequality is known as LYM inequality by the names ofthree people that independently discovered it:Lubell[2], Yamamoto[4],Meshalkin[3].
Since for every integer , LYM inequality tells us that which is Sperner’s theorem (http://planetmath.org/SpernersTheorem).
References
- 1 Konrad Engel. Sperner theory, volume 65 of Encyclopedia of Mathematicsand Its Applications. Cambridge University Press. http://www.emis.de/cgi-bin/zmen/ZMATH/en/quick.html?type=html&an=0868.05001Zbl 0868.05001.
- 2 David Lubell. A short proof of Sperner’s lemma. J. Comb. Theory, 1:299, 1966. http://www.emis.de/cgi-bin/zmen/ZMATH/en/quick.html?type=html&an=0151.01503Zbl 0151.01503.
- 3 Lev D. Meshalkin. Generalization
of Sperner’s theorem on the number of subsets of afinite set
. Teor. Veroyatn. Primen., 8:219–220, 1963. http://www.emis.de/cgi-bin/zmen/ZMATH/en/quick.html?type=html&an=0123.36303Zbl 0123.36303.
- 4 Koichi Yamamoto. Logarithmic order of free distributive lattice
. J. Math. Soc. Japan, 6:343–353, 1954. http://www.emis.de/cgi-bin/zmen/ZMATH/en/quick.html?type=html&an=0056.26301Zbl 0056.26301.