请输入您要查询的字词:

 

单词 AlgebraicKtheory
释义

Algebraic K-theory


Algebraic K-theoryMathworldPlanetmath is a series of functorsMathworldPlanetmath on the category of rings.Broadly speaking, it classifies ring invariants, i.e. ring properties that are Morita invariant.

The functor K0

Let R be a ring and denote by M(R) the algebraic direct limitMathworldPlanetmath of matrix algebras Mn(R) under the embeddingsPlanetmathPlanetmathPlanetmathMn(R)Mn+1(R):a(a000).The zeroth K-group of R, K0(R), is the Grothendieck group (abelian groupMathworldPlanetmath of formal differencesPlanetmathPlanetmath) of idempotentsMathworldPlanetmathPlanetmath in M(R) up to similarity transformations.Let pMm(R) and qMn(R) be two idempotents.The sum of their equivalence classesMathworldPlanetmathPlanetmath [p] and [q] is the equivalence class of their direct sumMathworldPlanetmathPlanetmathPlanetmath:[p]+[q]=[pq] where pq=diag(p,q)Mm+n(R).Equivalently, one can work with finitely generated projective modules over R.

The functor K1

Denote by GL(R) the direct limit of general linear groupsMathworldPlanetmath GLn(R) under the embeddingsGLn(R)GLn+1(R):g(g001).Give GL(R) the direct limit topology, i.e. a subset U of GL(R) is open if and only ifUGLn(R) is an open subset of GLn(R), for all n.The first K-group of R, K1(R), is the abelianisation of GL(R), i.e.

K1(R)=GL(R)/[GL(R),GL(R)].

Note that this is the same as K1(R)=H1(GL(R),),the first group homology group (with integer coefficients).

The functor K2

Let En(R) be the elementary subgroupMathworldPlanetmathPlanetmath of GLn(R).That is, the group generated by the elementary n×n matrices eij(r), rR,where eij(r) is the matrix with ones on the diagonals, the value r in row i, column jand zeros elsewhere.Denote by E(R) the direct limit of the En(R) using the construction above (note E(R) is a subgroup of GL(R)).The second K-group of R, K2(R), is the second group homology group (with integer coefficients) of E(R),

K2(R)=H2(E(R),).

Higher K-functors

Higher K-groups are defined using the Quillen plus construction,

Knalg(R)=πn(BGL(R)+),(1)

where BGL(R) is the classifying spacePlanetmathPlanetmath of GL(R).

Rough sketch of suspension:

ΣR=ΣR(2)

where Σ=C/J.The cone, C, is the set of infinite matrices with integral coefficientsthat have a finite number of non-trivial elements on each row and column.The ideal J consists of those matrices that have only finitely manynon-trivial coefficients.

Ki(R)Ki+1(ΣR)(3)

Algebraic K-theory has a product structure,

Ki(R)Kj(S)Ki+j(RS).(4)

References

  • 1 H. Inassaridze, Algebraic K-theory. Kluwer Academic Publishers, 1994.
  • 2 Jean-Louis Loday, Cyclic Homology. Springer-Verlag, 1992.
随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 1:35:40