请输入您要查询的字词:

 

单词 mathbfabindexOfGradedPosets
释义

𝐚𝐛-index of graded posets


Let P be a graded poset of rank n+1with a 0^ and a 1^.Let ρ:P be the rank function of P.The 𝐚𝐛-index of P with coefficientsMathworldPlanetmath inthe ring R is a noncommutative polynomialMathworldPlanetmathPlanetmath Ψ(P) inthe free associative algebraR𝐚,𝐛 defined by the formulaMathworldPlanetmathPlanetmath

Ψ(P)=c={0^=x0<x1<<xk=1^}w(c),

with the weight of a chain c defined byw(c)=z1zn, where

zi={𝐛,iρ(x0,,xk)𝐚-𝐛,otherwise.

Let us compute Ψ in a simple example. Let Pn be theface latticeMathworldPlanetmath of an n-gon. Below we display P5.

\\xymatrix&&1^\\ar@-[lld]\\ar@-[ld]\\ar@-[d]\\ar@-[rd]\\ar@-[rrd]&&{p,q}\\ar@-[d]\\ar@-[rrrrd]&{q,r}\\ar@-[ld]\\ar@-[d]&{r,s}\\ar@-[ld]\\ar@-[d]&{s,t}\\ar@-[ld]\\ar@-[d]&{t,u}\\ar@-[ld]\\ar@-[d]{p}\\ar@-[rrd]&{q}\\ar@-[rd]&{r}\\ar@-[d]&{s}\\ar@-[ld]&{t}\\ar@-[lld]&&0^&&

Thus Pn hasn atoms, corresponding to vertices, and n coatoms, correspondingto edges. Further, each vertex is incident with exactly two edges.Let c={0^=x0<<xk=1^} be a chain in Pn. Thereare four possibilities.

  1. 1.

    c={0^<1^}. This chain does not include any elementsof ranks 1 or 2, so its weight is (𝐚-𝐛)2=𝐚2-𝐚𝐛-𝐛𝐚+𝐛2.

  2. 2.

    c includes a vertex but not an edge. This can happen in n ways.Each such chain has weight 𝐛(𝐚-𝐛).

  3. 3.

    c includes an edge but not a vertex. This can also happen in n ways.Each such chain has weight (𝐚-𝐛)𝐛.

  4. 4.

    c includes a vertex and an edge. Since each vertex is incident withexactly two edges, this can happen in 2n ways. The weight of such achain is b2.

Summing over all the chains yields

Ψ(P)=𝐚2+(n-1)𝐚𝐛+(n-1)𝐛𝐚+𝐛2
=(𝐚+𝐛)2+(n-2)(𝐚𝐛+𝐛𝐚).

In this case the 𝐚𝐛-index can be rewritten as a noncommutativepolynomial in the variables 𝐜=𝐚+𝐛 and 𝐝=𝐚𝐛+𝐛𝐚.When this happens, we say that P has a 𝐜𝐝-index. Thusthe 𝐜𝐝-index of the n-gon is 𝐜2+(n-2)𝐝. Notevery graded poset has a 𝐜𝐝-index. However, every poset whicharisesas the face lattice of a convex polytope, or more generally, every gradedposet which satisfies the generalized Dehn-Sommerville relationsMathworldPlanetmath, has a 𝐜𝐝-index.

An example of a poset whose 𝐚𝐛-index cannot be writtenin terms of 𝐜 and 𝐝 is the boolean algebraMathworldPlanetmath B2 witha new maximal elementMathworldPlanetmath adjoined:

\\xymatrix&1^\\ar@-[d]&&{0,1}\\ar@-[ld]\\ar@-[rd]&{0}\\ar@-[rd]&&{1}\\ar@-[ld]&0^&

The 𝐚𝐛-index of this poset is 𝐚2+𝐛𝐚.

References

  • 1 Bayer, M. and L. Billera, Generalized Dehn-Sommerville relations forpolytopes, spheres and Eulerian partially ordered setsMathworldPlanetmath, Invent. Math. 79(1985), no. 1, 143–157.
  • 2 Bayer, M. and A. Klapper, A new index for polytopes, Discrete Comput.Geom. 6(1991), no. 1, 33–47.
  • 3 Stanley, R., Flag f-vectors and the cd-index, Math. Z. 216 (1994), 483-499.
随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 2:29:35