请输入您要查询的字词:

 

单词 mathitSL2mathbbFpHasNo1DimensionalIrreducibleRepresentationsOvermathbbFp
释义

𝑆𝐿(2,𝔽p) has no 1 dimensional irreducible representations over 𝔽p


Lemma.

The group G=SL(2,Fp) has no non-trivial 1 dimensional irreducible representations over Fp.

Proof.

Notice that a 1 dimensional representations over 𝔽p is just a homomorphismMathworldPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmath:

ρ:SL(2,𝔽p)𝔽p×.

Let ρ be as above. Then there exist an induced homomorphism for the projective special linear groupMathworldPlanetmath:

ρ¯:PSL(2,𝔽p)𝔽p×/{±𝐼𝑑}

defined by ρ¯(A)=ρ(B)mod{±𝐼𝑑}, where B is any lift of A to SL(2,𝔽p) (this is well defined because ρ(-𝐼𝑑)=±𝐼𝑑). Since PSL(2,𝔽p) is simple, the image of ρ¯ is trivial, and therefore, the image of ρ is contained in {±𝐼𝑑}.

However, SL(2,𝔽p) does not have subgroupsMathworldPlanetmathPlanetmath of index 2 (a subgroup of index 2 is normal). For our purposes, it suffices to show that:

ρ:SL(2,𝔽p){±𝐼𝑑}

satisfies ρ(-𝐼𝑑)=𝐼𝑑. Let SSL(2,𝔽p) be the matrix:

S=(0-110).

Notice that S2=-𝐼𝑑 and so ρ(S2)=(ρ(S))2=𝐼𝑑=ρ(-𝐼𝑑), as desired.∎

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/3 14:06:23