请输入您要查询的字词:

 

单词 AlgebraicSumAndProduct
释义

algebraic sum and product


Let α,β be two elements of an extension fieldMathworldPlanetmath of a given field K.  Both these elements are algebraic over K if and only if both α+β and αβ are algebraic over K.

Proof.  Assume first that α and β are algebraicMathworldPlanetmath.  Because

[K(α,β):K]=[K(α,β):K(α)][K(α):K]

and both here are finite (http://planetmath.org/ExtendedRealNumbers), then [K(α,β):K] is finite.  So we have a finite field extension K(α,β)/K which thus is also algebraic, and therefore the elements α+β and αβ of K(α,β) are algebraic over K.  Secondly suppose that α+β and αβ are algebraic over K.  The elements α and β are the roots of the quadratic equation  x2-(α+β)x+αβ=0  (cf. properties of quadratic equation) with the coefficients in K(α+β,αβ).  Thus

[K(α,β):K]=[K(α,β):K(α+β,αβ)][K(α+β,αβ):K]2[K(α+β,αβ):K].

Since  [K(α+β,αβ):K]  is finite,  then also  [K(α,β):K] is, and in the finite extension (http://planetmath.org/FiniteExtension)  K(α,β)/K  the elements α and β must be algebraic over K.

Titlealgebraic sum and product
Canonical nameAlgebraicSumAndProduct
Date of creation2013-03-22 15:28:03
Last modified on2013-03-22 15:28:03
Ownerpahio (2872)
Last modified bypahio (2872)
Numerical id8
Authorpahio (2872)
Entry typeTheorem
Classificationmsc 11R32
Classificationmsc 11R04
Classificationmsc 13B05
Synonymsum and product algebraic
Related topicFiniteExtension
Related topicTheoryOfAlgebraicNumbers
Related topicFieldOfAlgebraicNumbers
随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 3:39:38