请输入您要查询的字词:

 

单词 MeanCurvatureAtSurfacePoint
释义

mean curvature at surface point


Let P be a point on the surface  F(x,y,z)=0  where the function F is twice continuously differentiable on a neighbourhood of P. Then the normal curvatureMathworldPlanetmathPlanetmathPlanetmath ϰθ at P is, by Euler’s theorem, via the principal curvatures ϰ1 and ϰ2 as

ϰθ=ϰ1cos2θ+ϰ2sin2θ,(1)

where θ is the angle between (http://planetmath.org/AngleBetweenTwoPlanes) the normal sectionPlanetmathPlanetmath plane corresponding ϰ1 and the normal section plane corresponding ϰθ. When we apply (1) by taking instead θ the angle θ+π2, we may write

ϰθ+π2=ϰ1sin2θ+ϰ2cos2θ.

Adding this equation to (1) then yields

ϰθ+ϰθ+π22=ϰ1+ϰ22.

The contents of this result is the

Theorem. The arithmetic meanMathworldPlanetmath of the curvaturesMathworldPlanetmathPlanetmath (http://planetmath.org/CurvaturePlaneCurve) of two perpendicularPlanetmathPlanetmath normal sections has a value, which is equal to the arithmetic mean of the principal curvatures. This mean is called the mean curvatureMathworldPlanetmathPlanetmathPlanetmath at the point in question.

References

  • 1 Ernst Lindelöf: Differentiali- ja integralilaskuja sen sovellutukset II.  Mercatorin Kirjapaino Osakeyhtiö, Helsinki (1932).
随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 3:57:47