请输入您要查询的字词:

 

单词 MertensConjecture
释义

Mertens conjecture


Franz Mertens conjectured that |M(n)|<n where the Mertens functionMathworldPlanetmath is defined as

M(n)=i=1nμ(i),

and μ is the Möbius functionMathworldPlanetmath.

However, Herman J. J. te Riele and Andrew Odlyzko have proven that there exist counterexamples beyond 1013, but have yet to find one specific counterexample.

The Mertens conjectureMathworldPlanetmath is related to the Riemann hypothesisMathworldPlanetmath, since

M(x)=O(x12)

is another way of stating the Riemann hypothesis.

Given the Dirichlet series of the reciprocal of the Riemann zeta functionDlmfDlmfMathworld, we find that

1ζ(s)=n=1μ(n)ns

is true for (s)>1. Rewriting as Stieltjes integral,

1ζ(s)=0x-s𝑑M

suggests this Mellin transformDlmfMathworldPlanetmath:

1sζ(s)={M}(-s)=0x-sM(x)dxx.

Then it follows that

M(x)=12πiσ-isσ+isxssζ(s)𝑑s

for 12<σ<2.

References

  • 1 G. H. Hardy and S. Ramanujan, Twelve Lectures on Subjects Suggested by His Life and Work 3rd ed. New York: Chelsea, p. 64 (1999)
  • 2 A. M. Odlyzko and H. J. J. te Riele, “Disproof of the Mertens Conjecture.” J. reine angew. Math. 357, pp. 138 - 160 (1985)
随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 12:09:48