请输入您要查询的字词:

 

单词 MorseLemma
释义

Morse lemma


Let M be a smooth n-dimensional manifold, and f:M asmooth map. We denote by Crit(f) the set of critical points off, i.e.

Crit(f)={pM|(f*)p=0}

For each pCrit(f) we denote by f**:TpM×TpM (or (f**)p if p need to be specified) thebilinear map

f**(v,w)=v(w~(f))=w(v~(f)),v,wTpM,

where v~,w~𝒯(M) aresmooth vector fieldsMathworldPlanetmath such that v~p=v and w~p=w.This is a good definition. In fact pCrit(f) implies

v(w~(f))-w(v~(f))=(v~(f),w~(f))p=f*(v~,w~)p=0.

In smooth local coordinatesx1,,xn on a neighborhoodMathworldPlanetmath U of p we have

f**(xi|p,xj|p)=2fxixj(p).

A critical point pCrit(f) is called non degeneratewhen the matrix

(2fxixj(p))i,j{1,,n}

is non singular. We can equivalentlyexpress this condition without the use of local coordinates sayingthat pCrit(f) is non degenerate when for each vTpM{0} the linear functionalMathworldPlanetmath f**(v,)Hom(TpM,)is not zero, i.e. there exists w such that f**(v,w)0.

We recall that the index of a bilinear functional H:V×V is the dimensionPlanetmathPlanetmathPlanetmath Index(H) of a maximal linearsubspace WV such that H is negative definitePlanetmathPlanetmath onW×W.

Theorem 1 (Morse lemma)

Let f:MR be a smooth map. For each non degenerate pCrit(f) there exists a neighborhood U of p and smooth coordinatesPlanetmathPlanetmath x=(x1,,xn) on U such that x(p)=0 and

f|U=f(p)-(x1)2--(xλ)2+(xλ+1)2++(xn)2,

where λ=Index((f**)p).

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 8:29:02