请输入您要查询的字词:

 

单词 NilAndNilpotentIdeals
释义

nil and nilpotent ideals


An element x of a ring is nilpotentPlanetmathPlanetmath if xn=0 for some positive integer n.

A ring R is nil if every element in R is nilpotent. Similarly, a one- or two-sided idealMathworldPlanetmath is called nil if each of its elements is nilpotent.

A ring R [resp. a one- or two sided ideal A] is nilpotent if Rn=0 [resp. An=0] for some positive integer n.

A ring or an ideal is locally nilpotent if every finitely generatedMathworldPlanetmathPlanetmath subring is nilpotent.

The following implicationsMathworldPlanetmath hold for rings (or ideals):

nilpotentlocally nilpotentnil
Titlenil and nilpotent ideals
Canonical nameNilAndNilpotentIdeals
Date of creation2013-03-22 13:13:25
Last modified on2013-03-22 13:13:25
Ownermclase (549)
Last modified bymclase (549)
Numerical id6
Authormclase (549)
Entry typeDefinition
Classificationmsc 16N40
Related topicKoetheConjecture
Definesnil
Definesnil ring
Definesnil ideal
Definesnil right ideal
Definesnil left ideal
Definesnil subring
Definesnilpotent
Definesnilpotent element
Definesnilpotent ring
Definesnilpotent ideal
Definesnilpotent right ideal
Definesnilpotent left ideal
Definesnilpotent subring
Defineslocally nilpotent
Defineslocally nilpotent ring
Defineslocally nilpo
随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 9:29:02