请输入您要查询的字词:

 

单词 OrthogonalityOfChebyshevPolynomials
释义

orthogonality of Chebyshev polynomials


By expanding the of de Moivre identityMathworldPlanetmath

cosnφ=(cosφ+isinφ)n

to sum, one obtains as real partDlmfMathworldPlanetmath certain terms containing power products of cosφ and sinφ, the latter ones only with even exponentsMathworldPlanetmath.  When these are expressed with cosines (sin2φ=1-cos2φ), the real part becomes a polynomialPlanetmathPlanetmath Tn of degree n in the argument (http://planetmath.org/Argument2) cosφ:

cosnφ=Tn(cosφ)(1)

This can be written equivalently (http://planetmath.org/Equivalent3)

Tn(x)=cos(narccosx).(2)

It’s a question of Chebyshev polynomial of first kindDlmfMathworldPlanetmath and of n (cf. special cases of hypergeometric function).

For showing the orthogonality of Tm and Tn we start from the integralDlmfPlanetmathPlanetmath0πcosmφcosnφdφ, which via the substitution

cosφ:=x,dx=-sinφdφ=-1-x2dφ

changes to

0πcosmφcosnφdφ=-1-1Tm(x)Tn(x)dx1-x2.(3)

The left of this equation is evaluated by using the product formula in the entry trigonometric identities:

0πcosmφcosnφdφ=120π(cos(m-n)φ+cos(m+n)φ)𝑑φ={0 for mn,π2 for m=n0.

By (3), we thus have

-11Tm(x)Tn(x)dx1-x2={0 for mn,π2 for m=n0,

which means the orthogonality of the polynomials Tm(x) and Tn(x) weighted by 11-x2.

Any Riemann integrablePlanetmathPlanetmath real function f, defined on  [-1, 1],  may be expanded to the series

f(x)=a02T0(x)+j=1ajTj(x),

where

aj=2π-11f(x)Tj(x)dx1-x2  (j=0, 1, 2,)

This concerns especially the polynomials  f(x):=xn,  for which we obtain

xn=cosnφ=coshniφ= 2-n(eiφ+e-iφ)
= 2-n[(n0)(eniφ+e-niφ)+(n1)(e(n-2)iφ+e-(n-2)iφ)+]
=21-n[(n0)Tn(x)+(n1)Tn-2(x)+(n2)Tn-4(x)+].

(If n is even, the last term contains T0(x) but its coefficient is only a half of the middle number of the Pascal’s triangle row in question.)  Explicitly:

1=T0
x=T1
x2= 2-1(T2+T0)
x3= 2-2(T3+3T1)
x4= 2-3(T4+4T2+3T0)
x5= 2-4(T5+5T3+10T1)
x6= 2-5(T6+6T4+15T2+10T0)
x7= 2-6(T7+7T5+21T3+35T1)
x8= 2-7(T8+8T6+28T4+56T2+36T0)
x9= 2-8(T9+9T7+36T5+84T3+126T1)
   

References

  • 1 Pentti Laasonen: Matemaattisia erikoisfunktioita.  Handout No. 261. Teknillisen Korkeakoulun Ylioppilaskunta; Otaniemi, Finland (1969).
随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/26 3:55:54