请输入您要查询的字词:

 

单词 PairwiseComaximalIdealsProperty
释义

pairwise comaximal ideals property


Proposition 1.

Let R be a commutative ring with unity. For every pairwise comaximal ideals I1,I2,,In, the following holds:

I1I2In=I1I2In.(1)
Proof.

We prove by inductionMathworldPlanetmath on n. For n=2, I1+I2=R implies:

I1I2=R(I1I2)=(I1+I2)(I1I2)I1I2.(2)

The converseMathworldPlanetmath inclusion is trivial. Assume now that the equality holds for n2: J:=I1I2In=I1I2In. Since In+1+Ij=R, for every jn+1, there exist the elements ajIj and bjIn+1 such that aj+bj=1. The productPlanetmathPlanetmath c:=j=1naj=j=1n(1-bj)1+In+1. Also cJ, then 1J+In+1 or J+In+1=R.
Applying the case 2, the induction step is satisfied:

I1I2In+1=JIn+1=JIn+1=I1I2InIn+1.(3)

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/25 16:14:38