请输入您要查询的字词:

 

单词 PartialFractionsInEuclideanDomains
释义

partial fractions in Euclidean domains


This entry states and proves the existence of partial fraction decompositionson an Euclidean domain.

In the following, we use ν to denote the Euclidean valuation functionof an Euclidean domain E, with the convention that ν(0)=-.

For a gentle introduction:

  1. 1.

    See partial fractions of fractional numbers (http://planetmath.org/PartialFractions) for the case when E consists of theintegers and ν(k)=|k|for k0.

  2. 2.

    See partial fractions of expressions for the case when Econsists of polynomialsMathworldPlanetmathPlanetmathPlanetmath over the complex field,with ν(p) being the degree of the polynomial p.

  3. 3.

    See partial fractions for polynomials for the case when E isthe ring of polynomials over any field, and ν is the degreeof polynomials.

Theorem 1.

Let p, q10 and q20 be elements of an Euclidean domain E,with q1 and q2 be relatively prime.Then there exist α1 and α2 in Esuchthat

pq1q2=α1q1+α2q2.
Proof.

By the Euclidean algorithmMathworldPlanetmath, we can obtain elements s1 and s2 in Esuch that

1=s1q1+s2q2.

Then

pq1q2=ps2q1+ps1q2,

so we can take α1=ps2 and α2=ps1.∎

Theorem 2.

Let p and q0 be elements of an Euclidean domain E,and n be any positive integer.Then there exist elementsα1,,αn,β in E such that

pqn=β+α1q+α2q2++αnqn,ν(αj)<ν(q).
Proof.

Let r0=p.Iterating through k=1,,n in order,using the division algorithmPlanetmathPlanetmath,we can find elements rk and sksuch that

rk-1=rkq+sk,ν(sk)<ν(q).

Then

p=r0=r1q+s1
=(r2q+s2)q+s1
=
=rnqn+snqn-1+sn-1qn-2++s2q+s1
pqn=rn+snq+sn-1q2++s2qn-1+s1qn.

So set β=rn and αj=sn-j+1.∎

Theorem 3.

Let p and q0 be elements of an Euclidean domain E.Let q=ϕ1n1ϕ2n2ϕknkbe a factorization of q to prime factorsMathworldPlanetmathPlanetmath ϕi.Then there exist elements αij,β in Esuchthat

pq=β+i=1kj=1niαijϕij,ν(αij)<ν(ϕi).
Proof.

Apply Theorem 1 inductively to obtainelements si in E such that

pq=i=1ksiϕini

(the factors ϕi are relatively prime).Then apply Theorem 2 to obtain elementsαij and βi in E such that

siϕini=βi+j=1niαijϕij

with ν(αij)<ν(ϕi).Take β=β1++βk.∎

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 13:22:41