请输入您要查询的字词:

 

单词 PartialIsometryOnHilbertSpaces
释义

partial isometry on Hilbert spaces


Definition 1.

Let and 𝒦 be Hilbert spacesMathworldPlanetmath. An operator WL(,𝒦) is called a partial isometry if W is an isometry on M=(kerW). We then call M=(kerW) the initial space and N=WM final space of W.

We need to show that the above definition is compatible with the general definition of partial isometry on rings. Indeed we have the following:

Proposition 1.

WL(,𝒦) is a partial isometry iff W*W is a projection from H to M.

Proof.

We have:

W partial isometry with initial spaceM
Wf,Wg=f,gf,gM
W*Wf,g=f,gfM,g
W*Wf=f,fM
andW*Wf=0,fM=kerW

Remark 1.

If WL(H,K) is a partial isometry with initial space M and final space N we have:

W*(Wf)=ffM
kerW*=(ranW)=N

Thus N is the initial space and M the final space of W*.

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 1:16:31