Pascal’s rule proofWe need to show(nk)+(nk-1)=(n+1k)Let us begin by writing the left-hand side asn!k!(n-k)!+n!(k-1)!(n-(k-1))!Getting a common denominator and simplifying, we haven!k!(n-k)!+n!(k-1)!(n-k+1)!=(n-k+1)n!(n-k+1)k!(n-k)!+kn!k(k-1)!(n-k+1)!=(n-k+1)n!+kn!k!(n-k+1)!=(n+1)n!k!((n+1)-k)!=(n+1)!k!((n+1)-k)!=(n+1k)