请输入您要查询的字词:

 

单词 PeetresInequality
释义

Peetre’s inequality


Theorem  [Peetre’s inequality] [1, 2]If t is a real number and x,y are vectors inn, then

(1+|x|21+|y|2)t2|t|(1+|x-y|2)|t|.

Proof. (Following [1].)Suppose b and c are vectors in n. Then, from(|b|-|c|)20, we obtain

2|b||c||b|2+|c|2.

Using this inequality and the Cauchy-Schwarz inequality, we obtain

1+|b-c|2=1+|b|2-2bc+|c|2
1+|b|2+2|b||c|+|c|2
1+2|b|2+2|c|2
2(1+|b|2+|c|2+|b|2|c|2)
=2(1+|b|2)(1+|c|2)

Let us define a=b-c. Then for any vectors a and b, we have

1+|a|21+|b|22(1+|a-b|2).(1)

Let us now return to the given inequality.If t=0, the claim is trivially true for all x,y in n.If t>0, then raising both sides in inequality 1 tothe power of t, using t=|t|, and setting a=x, b=y yields the result.On the other hand, if t<0, then raising both sides in inequality1 to the power to -t, using -t=|t|, and settinga=y, b=x yields the result.

References

  • 1 J. Barros-Neta, An introduction to the theory of distributions,Marcel Dekker, Inc., 1973.
  • 2 F. Treves,Introduction To Pseudodifferential and Fourier Integral Operators,Vol. I, Plenum Press, 1980.
随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 10:14:33