请输入您要查询的字词:

 

单词 PeirceDecomposition
释义

Peirce decomposition


Let e be an idempotentPlanetmathPlanetmath of a ring R, not necessarily with an identityPlanetmathPlanetmath.For any subset X of R, we introduce the notations:

(1-e)X={x-exxX}

and

X(1-e)={x-xexX}.

If it happens that R has an identity elementMathworldPlanetmath, then 1-e is a legitimate element ofR, and this notation agrees with the usual product of an element and a set.

It is easy to see that XeX(1-e)=0=eX(1-e)X for any set X which contains 0.

Applying this first on the right with X=R and then on the left with X=Re and X=R(1-e),we obtain:

R=eReeR(1-e)(1-e)Re(1-e)R(1-e).

This is called the Peirce Decompostion of R with respect to e.

Note that eRe and (1-e)R(1-e) are subrings, eR(1-e) is an eRe-(1-e)R(1-e)-bimodule,and (1-e)Re is a (1-e)R(1-e)-eRe-bimodule.

This is an example of a generalized matrix ring:

R(eReeR(1-e)(1-e)Re(1-e)R(1-e))

More generally, if R has an identity element,and e1,e2,,en is a complete set of orthogonal idempotents,then

R(e1Re1e1Re2e1Rene2Re1e2Re2e2RenenRe1enRe2enRen)

is a generalized matrix ring.

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/25 4:57:29