请输入您要查询的字词:

 

单词 PeriodicityOfExponentialFunction
释义

periodicity of exponential function


Theorem.

The only periods of the complex exponential function  zez  are the multiples of 2πi.  Thus the functionMathworldPlanetmath is one-periodic.

Proof.  Let ω be any period of the exponential functionDlmfDlmfMathworldPlanetmathPlanetmath, i.e.  ez+ω=ezeω=ez  for all  z.  Because ez is always 0, we have

eω= 1.(1)

If we set  ω=:a+ib  with a and b reals, (1) gets the form

eacosb+ieasinb= 1,(2)

which implies (see equality of complex numbers)

eacosb= 1,easinb= 0.

As these equations are squared and added, we obtain  e2a=1  which , since a is real, that  a=0.  Thus the preceding equations get the form

cosb= 1,sinb= 0.

These result that  b=n2π  and therefore

ω=n2πi  (n= 0,±1,±2,±3,)

Q.E.D.

References

  • 1 Ernst Lindelöf: Johdatus funktioteoriaan (‘Introduction to function theory’).  Mercatorin kirjapaino, Helsinki (1936).
随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/3 14:40:46