请输入您要查询的字词:

 

单词 PolynomialEquationOfOddDegree
释义

polynomial equation of odd degree


Theorem.

The equation

a0xn+a1xn-1++an-1x+an=0(1)

with odd degree n and real coefficients ai (a00) has at least one real root x.

Proof.  Denote by f(x) the left hand side of (1).  We can write

f(x)=a0xn[1+g(x)]

where  g(x):=a1x++an-1xn-1+anxn.  But we have lim|x|g(x)=0  because

lim|x|aixi=0

for all  i=1,,n.  Thus there exists an  M>0  such that

|g(x)|<1for|x|M.

Accordingly  1+g(±M)>0  and

signf(±M)=(signa0)(sign(±M))n1=(signa0)(±1)

since n is odd.  Therefore the real polynomial function f has opposite signs in the end pointsPlanetmathPlanetmath of the intervalMathworldPlanetmath[-M,M].  Thus the continuity of f guarantees, according to Bolzano’s theorem, at least one zero x of f in that interval.  So (1) has at least one real root x.

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 1:11:08