请输入您要查询的字词:

 

单词 PostCorrespondenceProblem
释义

Post correspondence problem


Let Σ be an alphabet. As usual, Σ+ denotes the set of all non-empty words over Σ. Let PΣ+×Σ+ be finite. Call a finite sequencePlanetmathPlanetmath

(u1,v1),,(un,vn)

of pairs in P a correspondence in P if

u1un=v1vn.

The word u1un is called a match in P.

For example, if Σ={a,b}, and P={(b,b2),(a2,a),(b2a,b3),(ab2,a2b)}. Then

(a2,a),(ab2,a2b),(b2a,b3),(ab2,a2b),(b,b2)

is a correspondence in P.

On the other hand, there are no correspondences in {(ab,a),(a,ba2)}.

The Post correspondence problem asks the following:

Is there an algorithmMathworldPlanetmath (Turing machineMathworldPlanetmath or any other equivalentMathworldPlanetmathPlanetmathPlanetmathPlanetmath computing models) such that when an arbitrary P is given as an input, returns 1 if there exists a correspondence in P and 0 otherwise.

The problem is named after E. Post because he proved

Theorem 1.

The Post correspondence problem is unsolvable (no such algorithms exist).

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/5 0:57:51