请输入您要查询的字词:

 

单词 ProofOfBanachFixedPointTheorem
释义

proof of Banach fixed point theorem


Let (X,d) be a non-empty, complete metric space, and let T be acontraction mapping on (X,d) with constant q. Pick an arbitraryx0X, and define the sequence (xn)n=0 byxn:=Tnx0. Let a:=d(Tx0,x0). We first show by inductionMathworldPlanetmath thatfor any n0,

d(Tnx0,x0)1-qn1-qa.

For n=0, this is obvious. For any n1, suppose thatd(Tn-1x0,x0)1-qn-11-qa. Then

d(Tnx0,x0)d(Tnx0,Tn-1x0)+d(x0,Tn-1x0)
qn-1d(Tx0,x0)+1-qn-11-qa
=qn-1-qn1-qa+1-qn-11-qa
=1-qn1-qa

by the triangle inequalityMathworldMathworldPlanetmath and repeated application of the propertyd(Tx,Ty)qd(x,y) of T. By induction, the inequalityMathworldPlanetmath holds forall n0.

Given any ϵ>0, it is possible to choose a natural numberMathworldPlanetmath Nsuch that qn1-qa<ϵ for all nN, becauseqn1-qa0 as n. Now, for any m,nN (wemay assume that mn),

d(xm,xn)=d(Tmx0,Tnx0)
qnd(Tm-nx0,x0)
qn1-qm-n1-qa
<qn1-qa<ϵ,

so the sequence (xn) is a Cauchy sequencePlanetmathPlanetmath. Because (X,d) iscompletePlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmath, this implies that the sequence has a limit in (X,d);define x* to be this limit. We now prove that x* is a fixedpointPlanetmathPlanetmath of T. Suppose it is not, then δ:=d(Tx*,x*)>0.However, because (xn) convergesPlanetmathPlanetmath to x*, there is a naturalnumber N such that d(xn,x*)<δ/2 for all nN. Then

d(Tx*,x*)d(Tx*,xN+1)+d(x*,xN+1)
qd(x*,xN)+d(x*,xN+1)
<δ/2+δ/2=δ,

contradictionMathworldPlanetmathPlanetmath. So x* is a fixed point of T. It is also unique.Suppose there is another fixed point x of T; because xx*, d(x,x*)>0. But then

d(x,x*)=d(Tx,Tx*)qd(x,x*)<d(x,x*),

contradiction. Therefore, x* is the unique fixed point of T.

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 6:44:18