请输入您要查询的字词:

 

单词 ProofOfBorelCantelli1
释义

proof of Borel-Cantelli 1


Let Bk be the event i=kAi fork=1,2,,. If x is in the event Ai’s i.o., then xBk for all k. So xk=1Bk.

Conversely, if xBk for all k, then we can show that xis in Ai’s i.o. Indeed, xB1=i=1Aimeans that xAj(1) for some j(1). However xBj(1)+1 implies that xAj(2) for some j(2) that isstrictly larger than j(1). Thus we can produce an infiniteMathworldPlanetmathsequence of integer j(1)<j(2)<j(3)< such that xAj(i) for all i.

Let E be the event {x:xAi i.o.}. We have

E=k=1i=kAi.

From EBk for all k, it follows that P(E)P(Bk) for all k. By union bound, we know that P(Bk)i=kP(Ai). So P(Bk)0, by thehypothesisMathworldPlanetmathPlanetmath that i=1P(Ai) is finite. Therefore, P(E)=0.

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 6:08:20