请输入您要查询的字词:

 

单词 ProofOfCauchySchwarzInequality
释义

proof of Cauchy-Schwarz inequality


If a and b are linearly dependent, we write 𝒃=λ𝒂. So we get:

𝒂,λ𝒂2=λ2𝒂,𝒂2=λ2||𝒂||4=||𝒂||2||𝒃||2.

So we have equality if 𝒂 and 𝒃 are linearly dependent. In the other case we look at the quadratic function

||x𝒂+𝒃||2=x2||𝒂||2+2x𝒂,𝒃+||𝒃||2.

This function is positive for every real x, if 𝒂 and 𝒃 are linearly independent. Thus it has no real zeroes, which means that

𝒂,𝒃2-||𝒂||2||𝒃||2

is always negative. So we have:

𝒂,𝒃2<||𝒂||2||𝒃||2,

which is the Cauchy-Schwarz inequality if 𝒂 and 𝒃 are linearly independent.

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 1:38:07