请输入您要查询的字词:

 

单词 ProofOfCayleyHamiltonTheoremInACommutativeRing
释义

proof of Cayley-Hamilton theorem in a commutative ring


Let R be a commutative ring with identityPlanetmathPlanetmath and let A be an order n matrixwith elements from R[x].For example, if A is(x2+2x7x2x+15)

then we can also associate with A the following polynomialMathworldPlanetmathPlanetmathPlanetmath having matrix coefficents:

Aσ=[0105]+[2100]x+[1070]x2.

In this way we have a mapping AAσ which is an isomorphismPlanetmathPlanetmathPlanetmathPlanetmath of the rings Mn(R[x]) and Mn(R)[x].

Now let AMn(R) andconsider the characteristic polynomialMathworldPlanetmathPlanetmath of A: pA(x)=det(xI-A), which is a monicpolynomialMathworldPlanetmath of degree n with coefficients in R.Using a property of the adjugate matrix we have

(xI-A)adj(xI-A)=pA(x)I.

Now view this as an equation in Mn(R)[x]. It says that xI-A is a left factorof pA(x). So by the factor theorem, the left hand value of pA(x)at x=A is 0. The coefficients of pA(x) have the form cI, for cR,so they commute with A. Therefore right and left hand values are the same.

References

  • 1 Malcom F. Smiley. AlgebraMathworldPlanetmath of Matrices. Allyn and Bacon, Inc., 1965. Boston, Mass.
随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 6:47:12