请输入您要查询的字词:

 

单词 AlternateFormOfSumOfRthPowersOfTheFirstNPositiveIntegers
释义

alternate form of sum of rth powers of the first n positive integers


We will show that

k=0nkr=1n+1br(x)𝑑x

We need two basic facts. First, a property of the Bernoulli polynomialsMathworldPlanetmathPlanetmath is that br(x)=rbr-1(x). Second, the Bernoulli polynomials can be written as

br(x)=k=1r(rk)Br-kxk+Br

We then have

1n+1br(x)=1r+1(br+1(n+1)-br+1(1))=1r+1k=0r+1(r+1k)Br+1-k((n+1)k-1)
=1r+1k=1r+1(r+1k)Br+1-k(n+1)k

Now reverse the order of summation (i.e. replace k by r+1-k) to get

1n+1br(x)=1r+1k=0r(r+1r+1-k)Bk(n+1)r+1-k=1r+1k=0r(r+1k)Br(n+1)r+1-k

which is equal to k=0nkr (see the parent (http://planetmath.org/SumOfKthPowersOfTheFirstNPositiveIntegers) article).

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 16:04:16