请输入您要查询的字词:

 

单词 ProofOfComplexMeanvalueTheorem
释义

proof of complex mean-value theorem


The function h(t)=Ref(a+t(b-a))-f(a)b-a is a function defined on [0,1].We have h(0)=0 and h(1)=Ref(b)-f(a)b-a.By the ordinary mean-value theorem, there is a number t, 0<t<1, such that h(t)=h(1)-h(0).To evaluate h(t), we use the assumption that f is complex differentiableMathworldPlanetmath (holomorphic). The derivative of f(a+t(b-a))-f(a)b-a is equal to f(a+t(b-a)), then h(t)=Re(f(a+t(b-a))), so u=a+t(b-a) satisfies the required equation.The proof of the second assertion can be deduced from the result just proved by applying it to the function f multiplied by i.

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 14:44:46