请输入您要查询的字词:

 

单词 ProofOfDedekindMertensLemma
释义

proof of Dedekind-Mertens lemma


Let R be subring of the commutative ring T and

f(X)=f0+f1X++fmXmandg(X)=g0+g1X++gnXn

be arbitrary polynomialsPlanetmathPlanetmath in T[X].  We will prove by induction on n that the R-submodulesMathworldPlanetmath of T generated by thecoefficients of the polynomials f, g, and fg satisfy

Mfn+1Mg=MfnMfg(1)

where the product modules are generated by the products of their generatorsPlanetmathPlanetmath.

The generators of the right hand side of (1) belong obviously to the left hand side,whence only the containment

Mfn+1MgMfnMfg(2)

has to be proved.

Firstly, (2) is trivial in the case  n=0.  Let now  n>0.  Define

fj:= 0forj<0orj>m

and let Gn be the R-submodule of T generated by g0,g1,,gn-1.  We have

i<nfk-igi=hk-fk-ngnMfg+gnMf

where hk is the coefficient of Xk of the polynomial fg, and thus by induction wecan write

MfnGnMfn-1(Mfg+gnMf)Mfn-1Mfg+Mfngn.

This implies the containment

fiMfnGnMfnMfg+Mfnfign

for every i.  In addition, we have

fignMfg+fi+1Gn+Mi+2Gn++fnGn,

whence

fiMfnGnMfnMfg+fi+1MfnGn++fnMfnGn.

From this we infer that

fiMfnGnMfnMfg

is true for each  i = m, m-1,, 0.  Thus also (2) is true.

References

  • 1 J. Pahikkala: “Some formulae for multiplying and inverting ideals”.  – Ann. Univ. Turkuensis 183 (A) (1982).
  • 2 J. Arnold & R. Gilmer: “On the contents of polynomials”.  – Proc. Amer. Math. Soc. 24 (1970).
  • 3 T. Coquand: “A direct proof ofDedekind–Mertens lemma”. University of Gothenburg 2006. (Availablehttp://www.cse.chalmers.se/ coquand/mertens.pdfhere.)
随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 1:45:43