proof of double angle identitySine:sin(2a)=sin(a+a)=sin(a)cos(a)+cos(a)sin(a)=2sin(a)cos(a).Cosine:cos(2a)=cos(a+a)=cos(a)cos(a)+sin(a)sin(a)=cos2(a)-sin2(a).By using the identitysin2(a)+cos2(a)=1we can change the expression above into the alternate formscos(2a)=2cos2(a)-1=1-2sin2(a).Tangent:tan(2a)=tan(a+a)=tan(a)+tan(a)1-tan(a)tan(a)=2tan(a)1-tan2(a).