请输入您要查询的字词:

 

单词 ProofOfEulerFoursquareIdentity
释义

proof of Euler four-square identity


Using Lagrange’s identityPlanetmathPlanetmath, we have

(k=14xkyk)2=(k=14xk2)(k=14yk2)-1k<i4(xkyi-xiyk)2.(1)

We group the six squares into 3 groups of two squares and rewrite:

(x1y2-x2y1)2+(x3y4-x4y3)2(2)
=((x1y2-x2y1)+(x3y4-x4y3))2-2((x1y2-x2y1)(x3y4-x4y3))(3)
(x1y3-x3y1)2+(x2y4-x4y2)2
=((x1y3-x3y1)-(x2y4-x4y2))2+2(x1y3-x3y1)(x2y4-x4y2)(4)
(x1y4-x4y1)2+(x2y3-x3y2)2
=((x1y4-x4y1)+(x2y3-x3y2))2-2(x1y4-x4y1)(x2y3-x3y2).(5)

Using

-2((x1y2-x2y1)(x3y4-x4y3))+2(x1y3-x3y1)(x2y4-x4y2)(6)
-2(x1y4-x4y1)(x2y3-x3y2)=0

we get

1k<i4(xkyi-xiyk)2=((x1y2-x2y1)+(x3y4-x4y3))2(7)
+((x1y3-x3y1)-(x2y4-x4y2))2(8)
+((x1y4-x4y1)+(x2y3-x3y2))2

by adding equations 2-4. We put the result of equation 7 into1 and get

(k=14xkyk)2(9)
=(k=14xk2)(k=14yk2)-((x1y2-x2y1+x3y4-x4y3)2
-(x1y3-x3y1+x4y2-x2y4)2-(x1y4-x4y1+x2y3-x3y2)2

which is equivalentMathworldPlanetmathPlanetmathPlanetmathPlanetmath to the claimed identity.

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 9:35:48