proof of generalization of the parallelogram lawLet g(x,y)=∥x+y∥2-∥x∥2 and m(x,y)=⟨x,y⟩+⟨y,x⟩.Theng(x,y)=∥y∥2+m(x,y).Hence, taking x1=x4=x,x2=y,x3=z we have:∑i=13∥xi+xi+1∥2-∑i=13∥xi∥2=∑i=13g(xi,xi+1)=∑i=13∥xi∥2+∑i=13m(xi,xi+1)=∥∑i=13xi∥2.