请输入您要查询的字词:

 

单词 ProofOfJacobisIdentityForvarthetaFunctions
释义

proof of Jacobi’s identity for ϑ functions


We start with the Fourier transformDlmfMathworldPlanetmath of f(x)=eiπτx2+2ixz:

-+eiπτx2+2ixze2πixy𝑑x=(-iτ)-1/2e-i(z+πy)2πτ

Applying the Poisson summation formula, we obtain the following:

n=-+eiπτn2+2inz=(-iτ)-1/2n=-+e-i(z+πn)2πτ

The left hand equals ϑ3(zτ). The right hand can be rewritten as follows:

n=-+e-i(z+πn)2πτ=e-iz2πτn=-+e-iπn2τ-2inzτ=e-iz2πτϑ3(z/τ-1/τ)

Combining the two expressions yields

ϑ3(zτ)=e-iz2πτϑ3(z/τ-1/τ)
随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/25 11:02:52