请输入您要查询的字词:

 

单词 ProofOfLHopitalsRuleForinftyinftyForm
释义

proof of l’Hôpital’s rule for / form


This is the proof of L’Hôpital’s Rule (http://planetmath.org/LHpitalsRule)in the case of the indeterminate form ±/.Compared to the proof for the 0/0 case (http://planetmath.org/ProofOfDeLHopitalsRule),more complicated estimates are needed.

Assume that

limxaf(x)=±,limxag(x)=±,limxaf(x)g(x)=m,

where a and m are real numbers.The case when a or m is infinite only involvesslight modifications to the argumentsMathworldPlanetmath below.

Given ϵ>0.there is a δ>0 such that

|f(ξ)g(ξ)-m|<ϵ

whenever 0<|ξ-a|<δ.

Let c and x be points such thata-δ<c<x<a or a<x<c<a+δ.(That is, both c and x are within distance δ of a,but x is always closer.)By Cauchy’s mean value theorem, there exists some ξxin between c and x (and hence 0<|ξx-a|<δ)such that

f(x)-f(c)g(x)-g(c)=f(ξx)g(ξx).

We can assume the values f(x), g(x), f(x)-f(c), g(x)-g(c)are all non-zero when x is close enough to a,say, when 0<|x-a|<δ for some 0<δ<δ.(So there is no division by zero in our equations.)This is because f(x) and g(x) were assumed to approach ±,so when x is close enough to a,they will exceed the fixed values f(c), g(c), and 0.

We write

f(x)g(x)=f(x)f(x)-f(c)g(x)-g(c)g(x)f(x)-f(c)g(x)-g(c)
=1-g(c)/g(x)1-f(c)/f(x)f(ξx)g(ξx).

Note that

limxa1-g(c)/g(x)1-f(c)/f(x)=1,

but ξx is not guaranteed to approach a as x approaches a,so we cannot just take the limit xa directly. However:there exists 0<δ′′<δ so that

|1-g(c)/g(x)1-f(c)/f(x)-1|<ϵ|m|+ϵ

whenever 0<|x-a|<δ′′.Then

|f(x)g(x)-m|=|(f(ξx)g(ξx)-m)+f(ξx)g(ξx)(1-g(c)/g(x)1-f(c)/f(x)-1)|
ϵ+(|m|+ϵ)ϵ|m|+ϵ=2ϵ

for 0<|x-a|<δ′′.

This proves

limxaf(x)g(x)=m=limxaf(x)g(x).

References

  • 1 Michael Spivak, Calculus, 3rd ed. Publish or Perish, 1994.
随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 6:50:50