请输入您要查询的字词:

 

单词 ProofOfLocalizationsOfDedekindDomainsAreDedekind
释义

proof of localizations of Dedekind domains are Dedekind


Let R be a Dedekind domainMathworldPlanetmath with field of fractionsMathworldPlanetmath k and SR{0} be a multiplicative set. We show that the localizationMathworldPlanetmath at S,

S-1R{s-1x:xR,sS},

is again a Dedekind domain.

We use the characterization of Dedekind domains as integral domainsMathworldPlanetmath in which every nonzero ideal is invertible (http://planetmath.org/FractionalIdeal) (see proof that a domain is Dedekind if its ideals are invertible).

Let 𝔞 be a nonzero integral ideal of S-1R. Then 𝔞R is a nonzero ideal of the Dedekind domain R, so it has an inverse

(𝔞R)𝔟=R.

Here, 𝔟 is a fractional idealMathworldPlanetmath of R. Also let S-1𝔟 be the fractional ideal of S-1R generated by 𝔟,

S-1𝔟={s-1x:x𝔟,sS}.

The equalities

𝔞(S-1𝔟)=S-1((𝔞R)𝔟)=S-1R

show that 𝔞 is invertible, so S-1R is a Dedekind domain.

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/5 4:36:53