请输入您要查询的字词:

 

单词 ProofOfMartingaleCriterion
释义

proof of Martingale criterion


Let (τk)k1 be a localizing sequence of stopping times for X. Then:

Λ{τkn}ΛΩa.s.k,n

since {τkn}k1{τkn}n.

k=1{τkn}=Ωa.s., sinceτk,a.s.

Now assume EXn-<,nn0 (the case EXn+< being analogous).

1) We have EXn-<n.

We proceed by (backward) inductionMathworldPlanetmath. For n=n0 the statement holds.

nn-1:

(Xτk)-=(Xτkn-)nsubmartingale

We have:

{τkn}Xn-1-𝑑P={τkn}Xτk(n-1)-𝑑P
{τkn}Xτkn-𝑑P={τkn}Xn-𝑑P
Xn-𝑑P<

Where the first to second line is the submartingale property and the last line follows by induction hypothesis.

Using Fatou we get:

Xn-1-𝑑P=limkXn-1-Λ{τkn}dP
lim infkXn-1-Λ{τkn}𝑑P
Xn-𝑑P<

2) We have Xn1(n).

We have Xτkn+Xn+ a.s., k,n. With Fatou we get:

EXn+lim infkEXτkn+
=EX0+lim infkEXτkn-
=EX0+lim infkE(j=0n-1Xj-Λ{τk=j}+Xn-Λ{τkn})
EX0+j=0nEXj-<

With 1) Xn1 follows.

3)

X is a martingale, because XnτkXn a.s. k and:

|Xnτk|j=0n|Xj|1(1-bound)

Thus XnτkL1Xn,kn by bounded convergence theoremMathworldPlanetmath.Hence X must be martingale and we are done. ∎

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 12:05:56