请输入您要查询的字词:

 

单词 ProofOfMollweidesEquations
释义

proof of Mollweide’s equations


We transform the equation

(a+b)sinγ2=ccos(α-β2)

to

acos(α2+β2)+bcos(α2+β2)=ccosα2cosβ2+csinα2sinβ2,

using the fact that γ=π-α-β. The left hand side can be further expanded, so that we get:

a(cosα2cosβ2-sinα2sinβ2)+b(cosα2cosβ2-sinα2sinβ2)=ccosα2cosβ2+csinα2sinβ2.

Collecting terms we get:

(a+b-c)cosα2cosβ2-(a+b+c)sinα2sinβ2=0.

Using s:=a+b+c2 and using the equations

sinα2=(s-b)(s-c)bc
cosβ2=s(s-a)bc

we get:

2s(s-c)c(s-a)(s-b)ab-2s(s-c)c(s-a)(s-b))ab=0,

which is obviously true. So we can prove the first equation by going backwards. The second equation can be proved in quite the same way.

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 23:34:52