请输入您要查询的字词:

 

单词 ProofOfQuadraticReciprocityRule
释义

proof of quadratic reciprocity rule


The quadratic reciprocity law is:

Theorem: (Gauss) Let p and q be distinct odd primes,and write p=2a+1 and q=2b+1. Then(pq)(qp)=(-1)ab.

((vw) is the Legendre symbolMathworldPlanetmath.)

Proof:Let R be the subset [-a,a]×[-b,b]of ×. Let Sbe the interval

[-(pq-1)/2,(pq-1)/2]

of .By the Chinese remainder theoremMathworldPlanetmathPlanetmathPlanetmath, there exists a uniquebijection f:SR such that, for any sS, if wewrite f(s)=(x,y), thenxs(modp) andys(modq).Let P be the subset of R consisting of the values of f on[1,(pq-1)/2].P contains, say, u elements of the form(x,0) such that x<0, and v elements of the form(0,y) with y<0. Intending to apply Gauss’s lemma,we seek some kind of comparison between u and v.

We define three subsets of P by

R0={(x,y)P|x>0,y>0}
R1={(x,y)P|x<0,y0}
R2={(x,y)P|x0,y<0}

and we let Ni be the cardinal of Ri for each i.

P has ab+b elements in the region y>0, namely f(m) for allm of the form k+lq with1kb and 0la.Thus

N0+N1=ab+b-(b-v)+u

i.e.

N0+N1=ab+u+v.(1)

Swapping p and q, we have likewise

N0+N2=ab+u+v.(2)

Furthermore, for any sS, if f(s)=(x,y) then f(-s)=(-x,-y).It follows that for any (x,y)Rother than (0,0), either (x,y) or (-x,-y) isin P, but not both.Therefore

N1+N2=ab+u+v.(3)

Adding (1), (2), and (3) gives us

0ab+u+v(mod2)

so

(-1)ab=(-1)u(-1)v

which, in view of Gauss’s lemma, is the desired conclusionMathworldPlanetmath.

For a bibliography of the more than 200 known proofs ofthe QRL, seehttp://www.rzuser.uni-heidelberg.de/ hb3/fchrono.htmlLemmermeyer.

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 11:30:54