proof of tangents lawTo prove thata-ba+b=tan(A-B2)tan(A+B2)we start with the sines law, which says thatasin(A)=bsin(B).This implies thatasin(B)=bsin(A)We can write sin(A) assin(A)=sin(A+B2)cos(A-B2)+cos(A+B2)sin(A-B2).and sin(B) assin(B)=sin(A+B2)cos(A-B2)-cos(A+B2)sin(A-B2).Therefore, we havea(sin(A+B2)cos(A-B2)-cos(A+B2)sin(A-B2))=b(sin(A+B2)cos(A-B2)+cos(A+B2)sin(A-B2))Dividing both sides by cos(A-B2)cos(A+B2), we have,a(tan(A+B2)-tan(A-B2))=b(tan(A+B2)+tan(A-B2))This gives usab=tan(A+B2)+tan(A-B2)tan(A+B2)-tan(A-B2)Hence we find thata-ba+b=ab-1ab+1=tan(A-B2)tan(A+B2).