请输入您要查询的字词:

 

单词 ProofOfTheRingOfIntegersOfANumberFieldIsFinitelyGeneratedOvermathbbZ
释义

proof of the ring of integers of a number field is finitely generated over


Proof: Choose any basis α1,,αn of K over . Using the theorem in the entry multiplesMathworldPlanetmathPlanetmath of an algebraic numberMathworldPlanetmath, we can multiply each element of the basis by an integer to get a new basis α1,,αn with each αi𝒪K.
Consider the group homomorphismMathworldPlanetmath

φ:Kn:γ(TrK(γα1),,TrK(γαn))

where TrK is the trace (http://planetmath.org/trace2) from K to . Note that φ is 1-1, since if γ0 and φ(γ)=0, then

n=TrK(1)=TrK(γγ-1)=TrK(γriαi)=riTrK(γαi)=0

where the last equality holds since γkerφ.

Hence φ:𝒪Kn, so 𝒪K is finitely generatedMathworldPlanetmathPlanetmath and torsion-free. It has rank n since the αi are linearly independentMathworldPlanetmath, and rank n since it injects into n, so it has rank n.

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 15:40:08