请输入您要查询的字词:

 

单词 ProofOfTheWeakNullstellensatz
释义

proof of the weak Nullstellensatz


Let K be an algebraically closed field, let n0, and let I bean ideal in the polynomial ringMathworldPlanetmath K[x1,,xn]. Suppose I isstrictly smaller than K[x1,,xn]. Then I is contained in amaximal idealMathworldPlanetmath M of K[x1,,xn] (note that we don’t have toaccept Zorn’s lemma to find such an M, since K[x1,,xn] isNoetherianPlanetmathPlanetmathPlanetmath by Hilbert’s basis theorem), and the quotient ringMathworldPlanetmath

L=K[x1,,xn]/M

is a field. We view K as a subfieldMathworldPlanetmath of L via the naturalhomomorphismMathworldPlanetmathPlanetmath KL, and we denote the images ofx1,,xn in L by x¯1,,x¯n. Let{t1,,tm} be a transcendence basis of L over K; it isfinite since L is finitely generatedMathworldPlanetmathPlanetmathPlanetmath as a K-algebraMathworldPlanetmathPlanetmath. Now L isan algebraic extensionMathworldPlanetmath of K(t1,,tm). By multiplying theminimal polynomial of x¯i over K(t1,,tm) by asuitable element of K[t1,,tm] for each i, we obtainnon-zero polynomialsMathworldPlanetmathPlanetmath fiK[t1,,tm][X] with theproperty that fi(x¯i)=0 in L:

fi=ci,0+ci,1X++ci,diXdi  (1in)

for certain integers di>0 and polynomials ci,jK[t1,,tm] with ci,di0. Since K is algebraicallyclosedMathworldPlanetmath (hence infinite), we can choose u1,,unK such thatci,di(u1,,um)0 for all i. We define a homomorphismMathworldPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmath

ϕ:K[t1,,tm]K

by taking ϕ to be the identityPlanetmathPlanetmathPlanetmathPlanetmath on K and sending tj to uj.Let N be the kernel of this homomorphism. Then ϕ can beextended to the localizationMathworldPlanetmath K[t1,,tm]N ofK[t1,,tm]. Since ci,diN for all i, thex¯i are integral over this ring. Since K is algebraicallyclosed, the extension theorem for ring homomorphisms implies thatϕ can be extended to a homomorphism

ϕ:(K[t1,,tm]N)[x¯1,,x¯n]=LK.

Because L is an extension fieldMathworldPlanetmath of K and ϕ is the identity onK, we see that ϕ is actually an isomorphismMathworldPlanetmathPlanetmath, that m=0, andthat N is the zero idealMathworldPlanetmathPlanetmath of K. Now let a1=ϕ(x¯1),,an=ϕ(x¯n). Then for all polynomials f in theideal I we started with, the fact that fM implies

f(a1,,an)=ϕ(f(x1,,xn)+M)=0.

We conclude that the zero setMathworldPlanetmath V(I) of I is not empty.

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 16:04:17