请输入您要查询的字词:

 

单词 ProofOfThirdIsomorphismTheorem
释义

proof of third isomorphism theorem


We’ll give a proof of the third isomorphism theorem using the Fundamental homomorphism theoremMathworldPlanetmath.

Let G be a group, and let KH be normal subgroupsMathworldPlanetmath of G. Define p,q to be the natural homomorphismsMathworldPlanetmathPlanetmath from G to G/H, G/K respectively:

p(g)=gH,q(g)=gKgG.

K is a subset of ker(p), so there exists a unique homomorphismPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmath φ:G/KG/H so that φq=p.

p is surjectivePlanetmathPlanetmath, so φ is surjective as well; hence imφ=G/H. The kernel of φ is ker(p)/K=H/K. So by the first isomorphism theoremPlanetmathPlanetmath we have

(G/K)/ker(φ)=(G/K)/(H/K)imφ=G/H.
随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 9:02:21