请输入您要查询的字词:

 

单词 ProofOfTopologicallyIrreducibleRepresentationsAreAlgebraicallyIrreducibleForCalgebras
释义

proof of topologically irreducible representations are algebraically irreducible for C*-algebras


Denote by an arbitrary Hilbert spaceMathworldPlanetmath.To fix notation let 𝒰() be a C subalgebra of (). We then define the commutatorPlanetmathPlanetmath of 𝒰 by

𝒰:={T():TU=UTU𝒰}

Note that 𝒰 is closed with regard to the weak topology (see this entry (http://planetmath.org/CommutantIsAWeakOperatorClosedSubalgebra)). So 𝒰 is always a von Neumann algebraMathworldPlanetmathPlanetmathPlanetmath.

As an immediate consequence of Schur’s Lemma for group representationsMathworldPlanetmathPlanetmath on a Hilbert space we obtain the following result.

Lemma.Let 𝒰 be a -algebra and let π be a -representation of 𝒰 on the Hilbert space . Then π is topologically irreducible iff π(𝒰)=I.

We can now prove the result.

Theorem.Let 𝒰 be a C algebra. Assume the -representation π of 𝒰 on the Hilbert space is topologically irreducible. Then π is algebraically irreduciblePlanetmathPlanetmath.

Proof.

By the Lemma it follows that π(𝒰)=I. Hence π(𝒰)′′=(). By the double commutant theorem (http://planetmath.org/VonNeumannDoubleCommutantTheorem) every operator in ()1 (the unit ballPlanetmathPlanetmath in the set of bounded operatorsMathworldPlanetmathPlanetmath ()) belongs to the strong operator closurePlanetmathPlanetmath of π(𝒰)1 (the unit ball in π(𝒰)).

To show the algebraical irreducibility of π(𝒰) it is enough to find for two given vectors x,y,x0 an element T𝒰 such that π(T)x=y holds. Indeed, it is enough to consider the case x=y=1.

Now construct the rank one approximation T~1:=yx (T~1z=x,zy,zT~1x=xy=y) with a corresponding T1𝒰,π(T1)π(𝒰)1, so that y-π(T1)x=T~1x-π(T1)x12.

Approximate further T~2:=(y-π(T1)x)x12()1 and choose π(T2)12π(𝒰)1 with y-π(T1)x-π(T2)x=T~2x-π(T2)x122.

Proceed by induction with T~n:=(y-j=1n-1π(Tj)x)x2-j()1. Choose π(Tn)2-nπ(𝒰)1 with y-j=1nπ(Tj)x=T~nx-π(Tn)x2-n. Then we have π(T):=j=1nπ(Tn) in 𝒰 and π(T)x=y which completesPlanetmathPlanetmathPlanetmath the proof.∎

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 3:53:00