请输入您要查询的字词:

 

单词 ProofOfValuesOfTheRiemannZetaFunctionInTermsOfBernoulliNumbers
释义

proof of values of the Riemann zeta function in terms of Bernoulli numbers


This article proves part of the theorem given in the article.

Theorem 1.

For any positive integer n

ζ(2n)=(2π)2n|B2n|2(2n)!

where B2n is the 2nth Bernoulli numberDlmfDlmfMathworldPlanetmathPlanetmath.

Proof.The method is as follows. Using Fourier series together with inductionMathworldPlanetmath on n, we derive a formulaMathworldPlanetmathPlanetmath for the Bernoulli periodic function B2n(x) involving an infinite sum. On setting x to 0, this sum reduces to a constant times the appropriate zeta functionMathworldPlanetmath, and the result follows.

We first compute the Fourier series for B2(x). B2(x) is periodic with period 1, so

cn=01B2(x)e-2πinx𝑑x=01x2e-2πinx𝑑x-01xe-2πinx𝑑x+1601e-2πinx𝑑x

We have

01e-2πinx𝑑x=0
01xe-2πinxdx=-12πnxe-2πinx|01+12πin01e-2πinxdx=i2πn
01x2e-2πinxdx=-12πinx2e-2πinx|01+22πin01xe-2πinxdx=12π2n2+i2πn

so that

cn=12π2n2

But then bn=cn-c-n=0 for all n, a0=0, and for n>0, an=cn+c-n=1π2n2 (where an are the coefficients of cos and bn the coefficients of sin in the Fourier series). Thus

B2(x)=k=11π2k2cos(2πkx)=1π2k=11k2cos(2πkx)

Using this case as an inductive hypothesis, assume that for some n2

B2(n-1)(x)=(-1)n2(2(n-1))!(2π)2(n-1)k=11k2(n-1)cos(2πkx)

Then on (0,1)

B2n′′(x)=(2n)(2n-1)B2(n-1)(x)=(-1)n2(2n)!(2π)2(n-1)k=11k2(n-1)cos(2πkx)

and thus

B2n(x)=(-1)n2(2n)!(2π)2(n-1)k=11k2(n-1)cos(2πkx)dxdx

Since n2, the sum converges absolutely, so we can move the sum outside the integralsDlmfPlanetmath, and we get

B2n(x)=(-1)n2(2n)!(2π)2(n-1)k=11k2(n-1)cos(2πkx)𝑑x𝑑x
=(-1)n2(2n)!(2π)2(n-1)k=11k2(n-1)-14π2k2cos(2πkx)
=(-1)n+12(2n)!(2π)2nk=11k2ncos(2πkx)

Thus we have established this formula for all n1. Setting x=0, then, we get

B2n=(-1)n+12(2n)!(2π)2nk=11k2n=(-1)n+12(2n)!(2π)2nζ(2n)

or, trivially rewriting,

ζ(2n)=(-1)n+1(2π)2nB2n2(2n)!

But clearly ζ(2n)>0 for n1, so it must be that the B2n alternate in sign, and thus

ζ(2n)=(2π)2n|B2n|2(2n)!

Note that as a effect of this proof, we see that the even-index Bernoulli numbers alternate in sign!

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/5 2:27:05